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ABSTRACT  

Intentional action is essential to human behavior, yet its neural basis remains poorly understood. In 

order to identify neural networks specifically involved in intentional action, freely chosen and 

externally cued intentions have previously been contrasted. This has led to the identification of a 

fronto-parietal network, which is involved in freely choosing one’s intentions. However, it remains 

unclear whether this network encodes specific intentions, or whether it merely reflects general 

preparatory or control processes correlated with intentional action. Here, we used MVPA on fMRI 

data to identify brain regions encoding non-motor intentions that were either freely chosen or 

externally cued. We found that a fronto-parietal network, including the lateral prefrontal cortex, 

premotor, and parietal cortex, contained information about both freely chosen and externally cued 

intentions. Importantly, MVPA cross-classification indicated that this network represents the content 

of our intentions similarly, regardless of whether these intentions are freely chosen or externally 

cued. This finding suggests that the intention network has a general role in processing and 

representing intentions independent of their origin.  
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INTRODUCTION  

Intentional action is an essential part of everyday human behavior (Goschke, 2013; Haggard, 2008). 

In cognitive neuroscience, two types of intentions are often contrasted: internally vs. externally 

guided intentions (Beck et al., 2014; Brass et al., 2013; Cunnington et al., 2002; Forstmann et al., 

2006; Gilbert et al., 2009; Jahanshahi et al., 1995; Mueller et al., 2007, for a recent meta-analysis see 

Rae et al., 2014). Internally guided or “free” intentions are generated in the absence of direct 

external trigger stimuli and result from an internal choice process. Externally guided or “cued” 

intentions in contrast are generated in direct response to external stimuli. Note that when we speak 

of free intentions, we do not mean to imply that these intentions are less causally determined, but 

that they their direct cause is not an external stimulus. In typical experiments, subjects can either 

freely choose which of two tasks to perform (Soon et al., 2013), or they are externally cued as to 

which of two tasks to perform (Monsell, 2003; Ruge et al., 2013). By comparing the neural 

representations of free and cued intentions it is possible to assess whether they are processed 

similarly in the brain or not (Deiber et al., 1991; Forstmann et al., 2006; Passingham et al., 2010; but 

see Nachev and Husain, 2010). 

Previous research using functional magnetic resonance imaging (fMRI) suggests that different 

networks might be involved in processing free and cued intentions, with e.g. the dACC (Bengtsson et 

al., 2008; Forstmann et al., 2006; Mueller et al., 2007) or preSMA (Bengtsson et al., 2008; Rae et al., 

2014) being more strongly activated while processing free intentions. However, regions found to be 

associated with free intentions have also been found to be associated with general preparatory 

processes (Fedorenko et al., 2013), such as conflict monitoring (Botvinick et al., 2001). Whenever 

intentions are freely chosen, two comparable alternatives need to be maintained and conflict 

between them resolved (Brass et al., 2013). This conflict resolution might explain increased activation 

in the dACC as well, although in contrast to other conflict paradigms (Eriksen, 1995; Stürmer et al., 

2002) there is no “correct” or “incorrect” response for free choices.  Furthermore, working memory 

demands might also play a role (Lau et al., 2004a).  
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A solution to ruling out unspecific processes when comparing free and cued intentions, is to use 

multivoxel pattern analysis (MVPA; Haynes and Rees, 2006; Haynes, 2015; Kriegeskorte et al., 2006). 

Here, spatial activation patterns which encode the content of specific free (or cued) intentions can be 

identified.  

Recent studies identified a fronto-parietal network which encoded cued intentions, including the 

anterior medial PFC (Gilbert, 2011), lateral PFC, and parietal cortex (Bode and Haynes, 2009; 

Momennejad and Haynes, 2013; Wisniewski et al. 2015). A partly overlapping brain network was 

found to encode freely chosen intentions, including the dACC (Wisniewski et al., 2014), frontopolar 

cortex, precuneus (Soon et al., 2008), medial and lateral PFC (Haynes et al., 2007). However, it is still 

an open question whether free and cued intentions are represented similarly in the brain, although 

the overlapping networks seem to suggest this. Within a single region the same task might 

nonetheless have a different neural representation depending on whether it is free or cued. Thus, in 

order to identify regions where neural task representations under free and cued conditions are 

similar it is essential to directly compare the specific patterns coding individual intentions under both 

cueing and free conditions. Furthermore, comparing results from previous studies is complicated by 

the different tasks, stimuli and designs used. One recent study, which compared free and cued 

intentions within-subjects using the same task (Zhang et al., 2013), demonstrated that a fronto-

parietal intention network represents free and cued intentions. Different parts of this network were 

functionally specialized, with the premotor and parietal cortex representing both free and cued 

intentions, whereas the lateral PFC only represented free intentions. However, the tasks in this 

experiment were based on attending to different features of one stimulus, making it difficult to 

exclude attentional confounds in task coding. Moreover, it remains unclear whether results 

generalize to more abstract intentions, which are not specified in terms of direct stimulus-response-

mappings between perceptual features and motor responses, but rather refer to more abstract 

cognitive tasks such as mental calculation as used here (see Discussion for details).  



5 

 

Here, we report an experiment in which we directly compared the representations of free and cued 

intentions by applying MVPA to fMRI data in a mental calculation task. This research was motivated 

by two central questions: First, is the fronto-parietal intention network also involved in representing 

abstract, non-motor intentions  especially when differences in feature-based attention can be ruled 

out? Second, does this network represent freely chosen and externally cued intentions similarly, 

suggesting a general role for the fronto-parietal network in intention processing? Or does this 

network exhibit functional specialization with respect to freely chosen vs. externally cued intentions?  

 

MATERIALS AND METHODS 

 

Participants  

35 participants took part in the experiment (24 females). All subjects volunteered to participate and 

had normal or corrected-to-normal vision. Subjects gave written informed consent and received 25€ 

for participation. The experiment was approved by the local ethics committee. Subjects were right-

handed, and no subject had a history of neurological or psychiatric disorders. Four subjects showed 

excessive head movements inside the MR scanner (>5mm) and were excluded from further fMRI 

analyses. 

 

Experimental Paradigm 

The experiment was implemented using Matlab Version 8.1.0 (The MathWorks) and the Cogent 

Toolbox (http://www.vislab.ucl.ac.uk/cogent.php). Trials started with the presentation of a single 

visual cue centrally on screen (Figure 1). In half of the trials this cue specified one of two possible 

calculation task to be performed (adding or subtracting). This was the cued condition. In the other 

half of the trials, subjects were given the free choice between addition and subtraction (free 

condition). In half of the cued trials, subjects were cued to add, in the other half they were cued to 

subtract. In free trials, subjects received no explicit instruction on which task to perform in each trial.  
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Figure 1: A. Trial structure. At the beginning of each trial, subjects were presented with a cue 

indicating that they could either choose freely between the two tasks (free trials), or indicating which 

of the two tasks to perform (cued trials). After a variable delay, subjects were presented with two 

numbers on the screen and either added or subtracted them, depending on the current trial 

condition. The response screen was used to indicate the correct response, and in free trials the task 

performed was determined by subjects’ responses. Trials were separated by a variable inter-trial-

interval (ITI). B. Analyses. The three main analyses are presented. In the task decoding, addition 

(dark grey) and subtraction (light grey) trials were contrasted. In the task decoding cross-

classification, a classifier was trained to distinguish addition and subtraction trials in the free 

condition only. Classifier performance was then tested on cued trials. Only brain regions in which 

tasks are represented similarly in free and cued trials will show above chance decoding accuracies. In 

the intention type decoding, free trials (light grey) and cued trials (dark grey) were contrasted. 

 

The tasks (addition and subtraction) and intention types (free and cued) were orthogonalized in the 

experiment. The cues used were abstract line drawings that were designed to minimize a priori 

semantic associations to the subjects before the start of the experiment (see Wisniewski et al. 2014; 

Reverberi et al. 2012 for a similar approach). Furthermore, two cues each were associated with the 

free, cued addition, and cued subtraction conditions, respectively. This was done in order to allow 

dissociating the neural representation of the task choice from the visual identity of the cues (see 

below for details). Which of the two semantically identical cues was presented was pseudo-
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randomized across trials. The cue was presented visually for 1000ms, after which a variable delay 

followed (between 2000 and 10000ms, mean duration 6000ms, distributed uniformly in steps of 

2000ms). This delay allowed to dissociate in time the cue presentation and intention maintenance 

phase from the task execution, which followed after the delay. It also made the time of the task 

screen onset unpredictable to the subjects, forcing them to maintain a task representation 

throughout the whole delay period (Haynes et al., 2007). Two numbers were presented on the task 

screen, one above and the other below the fixation cross. Depending on the current condition 

subjects either added or subtracted these two numbers. The numbers were randomly chosen in each 

trial, from a set of numbers between 11 and 59. Integer multiples of 10 were excluded, as 

calculations with these numbers would be too easy. The numbers were presented for 2000ms. Then, 

a response screen was presented, giving subjects four different response options: the correct 

response for addition, the correct response for subtraction and two wrong responses. Response 

options were presented on four fixed positions on screen (Figure 1), which were mapped onto four 

buttons which subjects operated using their left and right index and middle fingers. The response-

mapping was pseudo-randomized in each trial, dissociating task execution from motor preparation 

processes. (This is in contrast with Zhang et al. 2013, where response-mappings were fixed for each 

subject, making a dissociation of task execution and motor preparation processes more difficult). The 

response screen was presented for 2000ms, irrespective of the actual reaction time (RT) in each trial. 

Note, that in free trials the chosen task was inferred from the responses. If for instance subjects 

chose the correct response for addition, we treated this trial as an addition trial. After the response 

screen, a variable inter-trial-interval was presented (mean duration 5000ms, between 3000ms and 

15000ms). Inter-trial-interval durations were distributed geometrically, to de-correlate individual 

trials in time.  

Overall, each subject performed 240 trials, divided into five runs of 48 trials each. The whole 

experimental session lasted around 90min on average. Subjects also underwent a one hour training 

session one to four days before the fMRI session. They learned the meaning of all abstract cues, and 
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familiarized themselves with the numerical tasks. This was done to minimize training effects during 

the fMRI session. At the end of the training session, subjects performed three runs of 48 trials each 

of the task, using the same parameters as would be used later in the fMRI session. In the training 

session, they were asked to choose addition and subtraction equally often across the whole 

experiment. Large choice biases severely complicate MVPA analyses, and we therefore screened 

subjects’ training data to rule out subjects that chose one task in more than 60% of the trials. None 

of our subjects showed a choice bias according to this criterion, and thus all pilot subjects were 

included in the fMRI scanning.  

 

Image Acquisition  

Functional imaging was conducted on a 3-Tesla Siemens Trio (Erlangen, Germany) scanner with a 12-

channel head coil. In each run, 417 T2*-weighted echo-planar images (EPI) were acquired (TR = 

2000ms, TE = 30ms, flip angle 90°). Each volume consisted of 33 slices, separated by a gap of 0.6mm. 

Matrix size was 64 x 64, and field of view (FOV) was 192mm, which resulted in a voxel size of 3 x 3 x 

3mm. The first three images of each run were discarded. 

 

Data Analysis: Behavior  

Behavioral data were analyzed using Matlab (Version 8.1.0). For each subject, task performance was 

assessed by calculating the mean RT and mean error rate across all runs. For all further analyses, 

error trials were discarded. We further quantified how often subjects chose addition and subtraction 

in free trials. We expected both values to be close to 50% (Allefeld et al., 2013). We also tested 

whether RTs and error rates differed between tasks, intention types (free or cued), and visual cues. 

We did not expect any reliable differences between these conditions. 
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Data Analysis: fMRI  

Functional data analysis was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm), unless stated 

otherwise. We first unwarped, realigned, and slice time corrected all volumes. Data were also 

screened for possible scanner artifacts, using the Artifact Detection Tool 

(http://www.nitrc.org/projects/artifact_detect/, ART version 2011-07). In three subjects, some 

volumes (between one and five) were marked as showing spiking artifacts. Variance that was due to 

these artifacts was removed in the affected subjects by explicitly modeling the artifact in all first level 

general linear model (GLM) analyses (as suggested in the ART documentation). Preprocessed data 

were entered into a GLM (Friston et al., 1994), after which multivoxel pattern analysis (MVPA, Cox 

and Savoy, 2003; Haynes and Rees, 2006; Haynes, 2015; Haxby, 2012; Kriegeskorte et al., 2006; Tong 

and Pratte, 2012) was performed. We investigated which brain regions coded for the tasks during the 

delay period and whether the codes used for freely chosen and externally cued tasks were similar. 

We also tested which brain regions encoded the intention type (freely chosen, externally cued) and 

whether the codes used were similar for the two tasks. Full details on the analyses are presented 

below. 

 

Multivariate decoding I – Tasks: In order to investigate the neural encoding of task-sets, a GLM was 

estimated for each subject. For each of the 5 runs we estimated regressors for addition trials and 

subtraction trials, collapsed across freely chosen and cued intentions. All regressors were locked to 

the onset of the cue presentation, while the duration was set to cover the whole delay period, 

encompassing the whole maintenance phase during which subjects had to represent their intentions, 

without yet implementing them. The task execution period was not explicitly modeled. Given that 

the delay period duration was variable, modeled signals were dissociated from task execution 

processes. We also added the current reaction time (RT) as a parametric modulation. This way, we 

used RTs to explicitly model any potential differences in task difficulty between addition and 

subtraction trials in order to minimize potential task difficulty effects. If not explicitly modelled, task 
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difficulty might partly explain task encoding effects in MVPA (Todd et al., 2013), although in other 

cases difficulty did not play a large role in explaining task decoding effects (Wisniewski et al., 2014; 

Woolgar et al., 2014). We decided to conservatively control for this potential confounding variable. 

We further added estimated movement parameters as separate regressors to the model. Brain 

responses were modeled using the SPM canonical haemodynamic response basis function.  

In the next step, we performed a decoding analysis on the parameter estimates of the GLM (Figure 

1B). A support vector classifier (SVC) was applied (Cox and Savoy, 2003; Haynes and Rees, 2006; 

Kamitani and Tong, 2005; Mitchell et al., 2004), implemented in The Decoding Toolbox (Hebart et al. 

2014). Using a fixed regularization parameter (C=1), we performed a searchlight decoding analysis 

(Haynes et al., 2007; Kriegeskorte et al., 2006) which makes no a priori assumptions about 

informative brain areas. Around each measured voxel a sphere with a radius of three voxels was 

defined in the acquired volumes. For both conditions (addition and subtraction), we extracted the 

parameter estimates for each of the N voxels in a given sphere, resulting in an N-dimensional pattern 

vector. This was done for each run independently. Pattern vectors from four of the five runs (training 

dataset) were used to train the SVC to discriminate between the two task patterns. Classifier 

performance was tested on the remaining independent run (test dataset). This procedure was 

repeated five times, with each run being the test dataset once (leave-one-run-out-cross-validation). 

This resulted in a five-fold cross-validation of the classifier performance, which is necessary to control 

for potential problems of overfitting. The mean prediction accuracy was calculated across all five 

cross-validation steps and assigned to the central voxel of the sphere. SVC was repeated for each 

voxel in the acquired brain volume, resulting in a 3-D accuracy map for each subject. These accuracy 

maps were normalized to a standard brain (Montreal Neurological Institute (MNI) EPI template as 

implemented in SPM8) and resampled to an isotropic resolution of 3x3x3mm. The images were then 

smoothed with a Gaussian kernel (FWHM = 6mm) in order to account for potential differences in 

localization across subjects. The group analysis was performed using a random effects model on the 

accuracy maps, which were statistically tested using voxelwise t-tests against chance level. Given that 



11 

 

the SVC was performed on two conditions, chance level was 50%. We applied a statistical threshold 

of p < 0.05 (FWE corrected at the cluster level, initial voxel threshold p < 0.005). 

 

Multivariate decoding II – Cross-classification of tasks: We then performed a second searchlight 

decoding analysis, testing whether tasks were represented similarly in the free and cued conditions 

(or “intention types”, Figure 1B). In this analysis, we first estimated a GLM with the following 

regressors: freely chosen addition trials, freely chosen subtraction trials, externally cued addition 

trials, and externally cued subtraction trials. Again, RTs were added as a parametric modulator to 

account for potential differences in task difficulty. We also added the estimated movement 

parameters as separate regressors to the model. Regressors were locked to the cue onset and 

duration was set to cover the whole delay. We then trained a first SVC to discriminate between freely 

chosen addition and freely chosen subtraction trials. Classifier performance was then tested on 

externally cued addition and subtraction trials. A second SVC was trained on externally cued trials 

and tested on freely chosen trials. This resulted in two accuracy maps per subject. Note that only 

brain regions that encoded tasks similarly in freely chosen and externally cued trials would show 

above chance accuracies in this analysis. Furthermore, training on one set of trials and testing on an 

independent set of trials counteracted potential problems of overfitting. The cross-classification 

approach used in this analysis can be used to identify brain regions in which activation patterns are 

invariant with respect to the free and cued conditions (see Kaplan et al., 2015 for more details). The 

group analysis was performed using a voxelwise one-factorial ANOVA (factor: training dataset, i.e. 

train on freely chosen trials vs. train on externally cued trials). A t-contrast was computed, testing 

which brain regions showed above chance (50%) accuracies for both training datasets. Please note, 

that this analysis has less power compared to the task decoding analysis described above. This is due 

to the fact that only half of the trials were used to estimate the regressors used for training the 

classifier (i.e. only freely chosen or externally cued trials). We applied a statistical threshold of p < 

0.05 (FWE corrected at the cluster level, initial threshold p < 0.005). 
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Multivariate decoding III – intention types: We also investigated the neural coding of intention 

types, i.e., whether subjects freely chose a task or whether it was externally cued (Figure 1B). We 

first estimated a GLM for each subject, using the following regressors in each run: freely chosen trials 

and externally cued trials. Reaction times were added as a parametric modulator in order to control 

for potential differences in difficulty between the conditions. Movement parameters were added as 

separate regressors. Regressors were locked to the cue onset and duration was set to the whole 

delay period of the trial. A searchlight decoding analysis similar to the task decoding was applied to 

the parameter estimates, identifying brain regions that code for intention type within each subject. 

The decoding analysis was performed on two conditions, resulting in a chance level of 50%. Resulting 

accuracy maps were normalized and smoothed and entered into a random effects group level 

analysis. A t-test was used to assess the statistical significance of the decoding results, using a 

statistical threshold of p < 0.05 (FWE corrected at the voxel level, minimal cluster size 20 voxels). The 

threshold was chosen more conservatively, as we expected a strong univariate signal difference 

between freely chosen and externally cued trials in this analysis (Forstmann et al. 2006; Mueller et 

al., 2007). 

 

Control analysis - multivariate decoding of visual cues: As stated above, we used two different visual 

cues in free, cued addition, and cued subtraction trials. This was done in order to dissociate neural 

responses to tasks and intention types from those to the visual features of the cues. We therefore 

ran an additional control analysis, directly assessing which brain regions represented the visual 

features of the cues. We started by estimating a GLM with the following regressors for each subject: 

cued addition trials with visual cue 1, cued addition trials with visual cue 2. We added RTs as a 

parametric modulator and entered movement parameters as separate regressors to the model. 

Regressors were locked to the cue onset and duration was set to the whole delay phase in the trial, 

in order to make this analysis comparable to the task and intention type decoding analyses. We then 
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conducted a searchlight decoding analysis, in which a SVC was trained to discriminate between the 

two visual cues used in cued addition trials. Note that the visual features of the cues were the only 

difference between the conditions contrasted here. Trials were identical in all other respects. The 

same analysis was repeated for cued subtraction trials, free addition trials, and free subtraction trials, 

resulting in four accuracy maps per subject. Accuracy maps were normalized and smoothed and 

assessed at the group level using a one factorial ANOVA (four analyses). Given that the classification 

was performed on two conditions, chance level was 50%. Results were thresholded at p < 0.05 (FWE 

corrected at the cluster level, initial threshold p < 0.005). The overlap with task and intention type 

decoding analyses was assessed. This approach was chosen in order to mimic task and intention type 

analyses as closely as possible. For instance, running a six-class decoding analysis, with each cue 

being assigned to one class would have changed the chance level to 16%, reducing our ability to 

directly compare these results with the task and intention type decoding analyses.  

 
RESULTS 
 
 
Behavioral Results  

The mean reaction time (RT) across all trials was 960ms (SE = 28ms). The mean error rate across all 

trials was 5.0% (SE = 0.5%). This includes cued trials in which a wrong button was pressed, free trials 

in which a button was pressed that was wrong for both tasks, and trials in which no button was 

pressed. In free trials, subjects chose addition in 51.2% (SE = 9.2%) of the trials and subtraction in 

48.8% (SE = 8.8%) of the trials, the difference not being significant, t(30) = 1.37, p = 0.18. 

Furthermore, subjects rarely chose a response option that was wrong for both tasks in free trials 

(3.4%, SE = 0.4%). This indicates that subjects indeed chose one of the two available tasks and did not 

merely pick responses randomly. RTs did not differ significantly between the visual cues, t(30) = 0.24, 

p = 0.81, and intention types (freely chosen vs. externally cued), t(30) = -0.74, p = 0.46. RTs differed 

between tasks t(30) = -4.5, p = 0.001, indicating that subtraction (RTsub = 978ms) was slightly more 

difficult than addition (RTadd = 942ms). Note that we corrected for this slight difficulty difference 
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between tasks in all fMRI analyses (see Methods above). Difficulty differences are thus unlikely to 

explain our neuroimaging results.  

 

 

Task information 

Distributed activation patterns in the left inferior parietal cortex and a large cluster encompassing 

the left inferior and medial frontal gyrus, and premotor cortex represented whether subjects 

intended to add or subtract the numbers presented on screen (Figure 2, p < 0.05 FWE corrected at 

the cluster level, initial voxel threshold p < 0.005, all results are also reported in Table 1). As a control 

analysis, we tested whether either addition or subtraction were associated with a univariate signal 

increase or decrease. We computed univariate contrast maps (addition < subtraction, and 

subtraction < addition), but found no brain region to show significant univariate signal differences 

between these two conditions (p < 0.05 FWE corrected at the cluster level, initial voxel threshold p < 

0.005). 

 

 

Figure 2. Task information. A. Regions in which local spatial activation patterns in the delay phase 

represented tasks are shown in red. Green regions represented tasks similarly in both freely chosen 

and externally cued trials, as assessed by cross-classifying freely chosen and externally cued tasks. 
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Yellow regions show the overlap of both analyses. B. Data from Bode & Haynes (2009). In their study, 

the authors found information about tasks in a highly similar network as in the current study. The 

image is included with permission of the authors. C. The plots depict region of interest analyses 

results for the parietal cortex and three sub-regions of the frontal cluster identified (inferior frontal 

gyrus IFG, medial frontal gyrus MFG, premotor cortex PM). The red bars represent decoding 

accuracies from the task decoding analysis. The green bars represent decoding accuracies from the 

task decoding using additional cross-classification across intention types. Given that all green bars are 

above chance, every region identified contains at least some neuronal populations that represent 

tasks similarly in freely chosen and externally cued trials. Error bars represent SEM.  

 

We then used a cross-classification approach (Kaplan et al., 2015) to test which brain regions 

represented tasks similarly for both freely chosen and externally cued tasks. Results indicated that 

only the ventral premotor cortex and inferior frontal gyrus represented tasks similarly for both 

intention types (Figure 2, p < 0.05 FWE corrected at the cluster level, initial voxel threshold p < 

0.005). At first glance this seems to be consistent with previously reported findings, which identified 

a highly similar task network and found similar coding only in parts of that network (Zhang et al. 

2013). However, we further investigated whether tasks were encoded similarly across intention types 

using a more sensitive leave-one-subject-out region of interest (ROI) analysis (for more details on this 

analysis method see Estermann et al., 2010). We repeated the task decoding group level analysis 

(without cross-classification) excluding a single subject. Voxel coordinates from all significant regions 

identified in this analysis were extracted. In the remaining subject, we then extracted the mean 

decoding accuracy from the task decoding analysis with and without cross-classification. This 

procedure was repeated until every subject was left out. This ensured that the data used to define 

the ROI remained independent from the data used to statistically assess the accuracy values inside 

this ROI, which was done using t-tests against chance level across all subjects (Bonferroni corrected 

for the number of tests performed). As in the whole-brain decoding results, the left lateral prefrontal 

cortex (including the inferior and middle frontal gyrus and premotor cortex) represented tasks 

similarly in freely chosen and externally cued trials, t(30) = 2.86, p = 0.003. Importantly, we found the 

same patterns of results for the inferior parietal cortex as well, t(30) = 2.58, p = 0.007 (Figure 2C). The 

decoding accuracies between the original and cross-classified task decoding analyses differed 
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significantly in the prefrontal cortex, t(30) = 2.81, p = 0.009, and parietal cortex, t(30) = 3.13, p = 

0.004, showing that the accuracies were higher in the original task decoding analysis without cross-

classification.  

Given that the prefrontal cluster identified in the task decoding analysis was fairly large, we repeated 

the ROI analysis, now taking into account anatomically defined sub-regions of the prefrontal cortex 

(as defined in the WFU_Pickatlas software, Maldjian et al., 2003). Specifically, ROIs were masked with 

anatomical masks encompassing the inferior frontal gyrus, medial frontal gyrus, and premotor 

cortex, respectively. Then, the leave-one-subject-out ROI analysis was performed as described above. 

All three prefrontal sub-regions thus tested represented the two tasks similarly (all ps < 0.05, 

corrected), demonstrating that there are no regional differences within the large prefrontal cluster 

with respect to the task cross-classification analysis. Furthermore, paired t-tests revealed that 

decoding accuracies were higher in the original decoding analysis in the left IFG and MFG (both ps < 

0.05, corrected), but not in the premotor cortex (p > 0.05, corrected). The more sensitive ROI-based 

analysis therefore revealed that every brain region that encodes tasks during the delay period does 

so similarly for freely chosen and externally cued intentions, which is in contrast with some previous 

findings (Zhang et al., 2013). It should be noted that in all brain regions except the premotor cortex 

the decoding accuracies of the cross-classified task decoding analysis yielded significantly lower 

accuracies than the original task decoding analysis (without cross-classification). This difference 

possibly stems from the fact that applying cross-classification to MVPA reduces the number of data 

points used to train the classifier, thus reducing the power of the analysis. This in turn might lead to 

lower overall decoding accuracies. Alternatively, this might indicate that only some parts of the 

identified brain regions (e.g. only a subset of parietal voxels) encoded tasks similarly in free and cued 

trials. This might also have led to lower decoding accuracies in the cross-classification analysis. 

Regardless, these results show that each region identified contains at least some neuronal 

populations which encode free and cued tasks similarly. 
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In order to ensure that neuroimaging results were not contaminated by any systematic response 

strategies in the free choice conditions (Arrington & Logan 2004, Demanet et al., 2013), two further 

control analyses were performed. First, training data was screened for strong and stable choice 

biases and task preferences. No subjects were found to exhibit such preferences (see Methods for 

more details). Second, choices might be affected by the previous trial. It has been shown previously 

that subjects tend to repeat tasks more often than expected under free choice conditions 

(“repetition bias”, Arrington and Logan, 2004). In some cases, the opposite bias (“switch bias”) can be 

observed (Allefeld et al., 2013). Although such sequential biases do not necessarily indicate non-

random choices (Allefeld et al., 2013), they possibly affect multivariate decoding results (Lages et al., 

2013, but see Soon et al., 2014). We therefore tested whether any such biases were present in each 

subject individually. We used mutual information (MI) measures in order to test whether the 

currently performed freely chosen task was associated with the task performed on the previous trial. 

MI is not sensitive to the direction of possible biases and can detect both switch and repetition 

biases. In order to assess the statistical significance of the MI value for each subject, we performed 

permutation tests. We ran 10.000 random choice simulations, calculating the same MI value for each 

random simulation and used these simulations to extract a null distribution. The statistical 

significance of the MI value for each subject was assessed by computing its percentile value in the 

null distribution. We found that choices in six subjects were in fact influenced by the previous task 

condition (p < 0.05). We then excluded these subjects and repeated the ROI analysis described 

above. Even after this additional control, we still found every brain region identified in the task 

decoding analysis (lateral PFC and parietal cortex) to encode tasks similarly during the delay period 

for freely chosen and externally cued intentions.  

We did not find medial prefrontal information in the task decoding analysis as has been reported 

previously using analyses that did not correct for task difficulty (e.g. Haynes et al. 2007; Momennejad 

et al. 2013; but see Zhang et al. 2013). We therefore used the medial prefrontal regions found in 

Haynes et al. (2007) in order to construct ROIs and test whether we find any task information in 
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these a priori defined ROIs. The authors in this study used similar tasks as we did here, and results 

should therefore be comparable (but note that Haynes et al., 2007 did not mix free and cued trials, as 

was the case in this experiment). We extracted the peak voxel coordinates from the anterior and 

posterior medial prefrontal cluster found in Haynes et al. 2007. We defined a sphere (radius 10mm) 

around these peak coordinates and used all voxels within the sphere as our ROI. For each subject, we 

extracted the accuracy values for the task decoding during the delay period in both ROIs. Using a t-

test against chance level (Bonferroni corrected for the two models we compared) we assessed the 

significance of the results. We found no task information during the delay period in either the 

anterior or posterior medial prefrontal cortex (ps > 0.05).  

 

Intention Type information 

Distributed activation patterns in most of the lateral and medial prefrontal cortex, and parietal cortex 

encoded whether subjects freely chose a task or were externally cued to perform a task during the 

cue and delay phase (Figure 3A, p < 0.05 FWE corrected at the voxel level, minimal cluster size 20 

voxels). The large effect likely stems from a global signal difference between freely chosen and 

externally cued trials. We therefore computed the univariate contrast of freely chosen minus 

externally cued trials, and found a widespread signal increase in a fronto-parietal network, including 

the rostral cingulate zone, lateral prefrontal cortex, and parietal cortex (p < 0.05 FWE corrected at 

the voxel level, minimal cluster size 20 voxels, Figure 3B). This is largely in line with previous work 

(Bengtsson et al., 2008; Forstmann et al., 2006; Mueller et al., 2007). The opposite contrast yielded 

no significant results. Given that multivariate analyses also reflect univariate signal contributions, 

albeit with a higher sensitivity (Davis et al., 2014), this explains the strong effect in our intention type 

decoding analysis.  
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Control analysis: Visual cue decoding 

In order to assess whether the visual features of the cues used in the experiment influenced task and 

intention type decoding results, we ran four separate control analyses, directly decoding the visual 

features of the cues in free addition, free subtraction, cued addition, and cued subtraction trials, 

respectively. All other variables were kept constant. We found no significant results in any of the four 

analyses (p < 0.05 FWE corrected at the cluster level, initial threshold p < 0.005). Furthermore, we 

also tested whether any of the ROIs defined in the task decoding analyses contained information 

about visual cues. This approach is more sensitive than whole-brain corrected analyses, yet it yielded 

no significant results in any ROI for any control analysis (all ps > 0.05, corrected). This confirms that 

our task and intention type decoding results do not merely reflect the visual features of the cues 

used in the experiment.  

 

DISCUSSION  

 

Our ability to form, maintain, and implement intentions is critical for goal-directed behavior. 

Intentions can be broadly classified according to how they are formed (Brass et al., 2013; Passingham 

et al., 2010): intentions can be determined largely by external cues, or they can be chosen freely. It 

remains an open question whether these different types of intentions are represented similarly in 

the brain or not.  In this experiment, we applied MVPA to fMRI data in order to identify brain regions 

that represent freely chosen and externally cued abstract intentions. Similarly to previous findings 

(Bode et al., 2009; Reverberi et al., 2012; Zhang et al., 2013), we found that free and cued intentions 

were represented in a left-lateralized fronto-parietal network, including the IFG, MFG, premotor and 

parietal cortex. Interestingly, the whole network identified in this study represented freely chosen 

and externally cued intentions using similar spatial activation patterns, suggesting that these regions 

have a general role in representing the content of intentions under varying conditions.  
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Figure 3. A. Intention type information. Regions which contained information about whether 

subjects freely chose a task or were externally cued to perform the task during the cue presentation 

and delay phase. As can be seen, most parts of the frontal and parietal cortex encoded the intention 

type. B. Intention type activation. Shown in blue are brain regions in which there was a univariate 

global signal increase when subjects freely chose their task, as compared to being externally cued to 

perform the task. We found differences in the medial prefontal cortex, dorso-lateral and anterior 

lateral prefrontal cortex and the parietal cortex, similar to previous work (Forstmann et al., 2006, 

Passingham et al., 2010). These univariate signal differences partly explain the strong effect in the 

multivariate intention type decoding analysis.  

 

 

General preparatory vs. specific intention-related processes  

Previous experiments demonstrated that freely choosing intentions increases activity in the dmPFC, 

dACC (Bengtsson et al., 2008; Forstmann et al., 2006), and the parietal cortex (Mueller et al., 2007). 

This might indicate that these brain regions are involved in encoding and maintaining freely chosen 
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intentions. But it might equally reflect general preparatory processes merely correlated with freely 

choosing intentions (Fedorenko et al., 2013), such as increased demands on conflict monitoring 

(Botvinick et al., 2001, Brass and Haggard, 2008). Using classical univariate analyses, it is difficult to 

determine whether the identified network is related to specific intention-related processes or 

whether it merely reflects general preparatory processes. This issue is somewhat ameliorated in 

MVPA studies, where specific free or cued intentions can be directly contrasted. For instance, brain 

regions that represent whether subjects choose to add or subtract two numbers differ in the content 

of the chosen intention, but not in conflict monitoring demands. A growing number of studies which 

investigated intention representations using MVPA indicate that the anterior medial PFC (Gilbert, 

2011), lateral PFC, and parietal cortex (Bode et al., 2009; Momennejad and Haynes, 2012, 2013; 

Waskom et al., 2014; Wisniewski et al., 2015) represent externally cued intentions. On the other 

hand, freely chosen intentions have been shown to be represented in the dmPFC, dACC (Wisniewski 

et al., 2014), frontopolar cortex, precuneus (Soon et al., 2008), medial and lateral PFC (Haynes et al., 

2007). Our results emphasize the role of the lateral PFC, premotor and parietal cortex in representing 

both freely chosen and externally cued intentions, with relatively little involvement of the medial PFC 

(see below for a possible explanation). These brain regions, which have previously been associated 

with cognitive control more generally (Duncan, 2001; Miller and Cohen, 2001), appear to be 

specifically involved in the representation and maintenance of intentions. Please note that this result 

does not rule out that the same regions have functions beyond intention representation, in fact they 

are known to be involved in a variety of different contexts (e.g. Fedorenko et al., 2013; Yeo et al., 

2015), such as cognitive control (Miller, 2000) or difficulty processing (Crittenden and Duncan, 2014). 

Our results help isolating their specific role in intention processing, controlling for other processes 

associated with the same brain regions.  
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Role of the medial and lateral PFC in intention processing  

It has previously been suggested that the intention network is dissociable along the medial-lateral 

axis, especially in the PFC: The medial PFC is thought to be more strongly involved in processing 

freely chosen intentions, while the lateral PFC is thought to be more strongly involved processing 

externally cued intentions (Brass et al., 2013; Brass and Haggard, 2008; Passingham et al., 2010). This 

hypothesis is consistent with previous findings which showed that freely chosen intentions are 

encoded in the medial PFC (e.g. Wisniewski et al., 2014), while externally cued intentions are 

encoded in the lateral PFC (e.g. Bode et al., 2009). However, this picture is complicated by findings 

that show both medial and lateral PFC involvement in cued (Momennejad and Haynes, 2013) and 

free intentions (Haynes et al., 2007), or a dissociation between free and cued intentions in the 

opposite direction (Gilbert et al., 2009). Note that these divergent results might be partly due to the 

differences in tasks, stimuli and designs used across studies. Here, we found free intentions to 

activate both medial and lateral prefrontal as well as parietal regions, supporting no strong medial vs. 

lateral dissociation. The functional organization of the intention network thus remains an open issue. 

Our current data allow a direct within-subject comparison of freely chosen and externally cued 

intentions, using the same tasks and stimuli. Our findings emphasize the role of the lateral prefrontal 

cortex in both free and cued intention representation (see also Zhang et al., 2013). This is in line with 

previous research demonstrating that the lateral prefrontal cortex is involved in the free selection of 

task sets (Forstmann et al., 2006; Rowe et al., 2008). It has further been shown that both the dlPFC 

(Bengtsson et al., 2009), as well as the vlPFC (Bunge et al., 2003; Woolgar et al., 2011) are involved in 

the maintenance of task sets (for a review see e.g. Sakai, 2008). This important role of the PFC in task 

processing might be supported by highly flexible neuronal populations (Duncan, 2001), which are 

able to represent abstract task sets (Wallis et al., 2001). This is a possible neural basis of the similar 

representation of free and cued intentions in the same brain regions in our experiment (see below 

for more details). An unexpected result was that our attempts to find information about intentions in 

the medial PFC, even when using ROI analyses, were unsuccessful. One possible explanation is that 
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previous studies did not control for task difficulty effects on the MVPA results as conservatively as we 

did in the current study (Todd et al., 2013). In a previous study, over half of all grey matter voxels 

were correlated with RTs, likely reflecting difficulty effects (Todd et al., 2013). These effects 

potentially influence task decoding results, and need to be controlled for carefully (but see Woolgar 

et al., 2014). An alternative explanation might be that previous MVPA studies did not intermix free 

and cued trials (Bode et al., 2009; Haynes et al., 2007), whereas subjects alternated between 

performing free and cued trials in the current experiment. In the related task switching literature, it 

has been demonstrated that intermixing different tasks changes cognitive control processes, as 

compared to performing two tasks in a block-wise fashion (Monsell, 2003). Possibly, a similar effect is 

present when intermixing free and cued tasks, as compared to performing blocks of free or cued 

tasks in isolation. In this case, the cognitive control processes might differ between the current and 

previous studies (Haynes et al., 2007), and this might lead to different engagement of medial PFC, 

which is known to be involved in cognitive control (e.g. Ridderinkhof et al., 2004). A third explanation 

for this result is that the medial PFC is known to be involved in learning and performing new tasks, 

with its involvement decreasing as the new task is more routinely performed (Chein and Schneider, 

2005; Koch et al., 2008). Subjects in our experiment underwent an extensive training session and 

performed the task routinely in the scanner, as evidenced by the very low error rates. This might 

have reduced our chances to find intention-related in formation in medial prefrontal brain regions 

(see Zhang et al., 2013 for a similar explanation). 

In some previous studies, the frontopolar cortex (FPC) has been implicated in voluntary selection as 

well (Orr and Banich, 2014, Soon et al., 2008). In contrast, our results do not provide further evidence 

for its role in representing either free or cued intentions. In one study (Orr and Banich, 2014), the FPC 

has been shown to be uniquely activated under free intention conditions, but not under cued 

intention conditions. This FPC activation might be related to general preparatory processes 

associated with voluntary selection, and does not necessarily reflect intention representations. In the 

other study (Soon et al., 2008), the FPC has been found to encode free intentions before the chosen 



24 

 

intention became conscious. In contrast, the current study only investigated representations of 

intentions that are already conscious. This suggests that the FPC might be specialized to represent 

pre-conscious intentions, but more research is clearly needed to resolve this issue. 

 

Functional specialization within the fronto-parietal intention network 

In a recent study, Zhang et al., (2013) found freely chosen and externally cued intentions to be 

represented in a fronto-parietal network that is highly similar to our current findings. In their 

experiment, subjects were instructed to attend to one of three different stimulus features, or were 

able to freely choose to which feature to attend to. Task performance thus strongly rested on 

feature-based attention, leaving unclear whether the results reflect intentions or feature-based 

attention. In our experiment, subjects performed more abstract tasks and conditions did not 

systematically differ in terms of feature-based attention. Interpretation of these previous results was 

further complicated by how motor and RT effects on MVPA results were controlled, and by the 

choice reporting procedure used. In contrast to our experiment, Zhang et al. (2013) did not model RT 

effects in the first-level GLM analyses, which is thought to be a highly conservative control procedure 

for difficulty-related effects in MVPA studies (see Todd et al., 2013). Also, stimulus-response 

mappings were fixed for each participant, while they were pseudo-randomized on a trial-by-trial 

basis in our study. Both of these controls allow us to more clearly dissociate intention 

representations from motor-related processes. Furthermore, subjects had to explicitly report each 

choice in the previous study. This procedure increases the attention to one’s own intentions, which is 

associated with increased activity in the lateral PFC and parietal cortex (Lau et al., 2004b). It might be 

that this additional attentional component affected intention representations found in Zhang et al. 

(2013). In contrast, we did not ask our subjects to explicitly report their choices, but rather inferred 

them from their responses in each trial. Despite these differences in experimental design and 

analysis methods, the intentions network identified in both studies is remarkably similar. This 

comparison rather shows that the fronto-parietal intention network has a general function in 
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processing and representing intentions, which is not specific to either attention-based or abstract, 

non-motor intentions.  

Although the intention network identified in the present study is similar to the one reported by 

Zhang et al. (2013), we found no evidence for functional specialization within this network with 

respect to different types of intentions. Whereas Zhang et al. (2013) reported that the premotor and 

parietal cortex represent both freely chosen and externally cued intentions, the dlPFC was found to 

be specialized in representing freely chosen intentions only. Based on this finding, the authors 

argued that some regions within the intention network contain neuronal populations which are able 

to encode different types of intentions and therefore have a general role in intention processing. 

Other regions are characterized by more specialized neuronal populations, which represent either 

freely chosen or externally cued intentions. Our findings support a different interpretation.  

In every region of the intention network identified, we found at least some neuronal populations 

which represent both freely chosen and externally cued intentions using similar spatial activation 

patterns. In light of our results, the whole intention network identified in this study seems to contain 

neuronal populations which are able to encode different types of intentions, suggesting that the 

whole network potentially plays a general role in intention processing. This extends previous findings 

which showed that similar regions can code different tasks flexibly (Stiers et al., 2010) and under 

varying conditions (Crittenden and Duncan, 2014, Waskom et al., 2014). Recently, it has been 

suggested that even the underlying mechanism for the selection of free and cued intentions is similar 

(Zhang et al., 2012). Both seem to be implemented using a common accumulation-to-threshold 

mechanism (Brown and Heathcote, 2008). Our findings suggest that a fronto-parietal network holds 

the intention representations that are the outcome of this selection mechanism. And given that this 

mechanism is similar for free and cued intentions, one might also expect the resulting intention 

representations to be similar as well. Relatedly, some recent research demonstrated that acquiring 

new skills is easier when their representations are similar to already learned skills (Stadtler et al., 
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2014). Taken together, these results suggest that representational similarity might be beneficial to 

implement behavior in a variety of different, changing contexts.  

In sum, our results demonstrate the generality of the fronto-parietal network in intention processing. 

Representations of specific intentions were found to be largely unaffected by the conditions under 

which they are formed, whether they were freely chosen or externally cued. Future studies will have 

to show whether this further generalizes to other types of intentions, such as reward-guided 

(Hampton and O’Doherty, 2007) or difficulty-guided (Wisniewski et al., 2014) intentions. 
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Tables 

 

Table 1. Brain regions identified in task and intention type analyses 

    

Peak MNI-
coordinates 

Brain Region Side Cluster Size x y z 

Task Decoding (no cross-classification) 
    

 
PFC L 1685 -33 -58 43 

 
parietal cortex L 1406 -54 -4 37 

Task Decoding (cross-classification across intention types) 
  

 
PFC L 403 -57 26 25 

Intention Type Decoding 
     

 
PFC B 12515 -39 47 22 

 
parietal cortex B 11754 -36 -49 46 

 
cerebellum R 463 39 -61 -41 

Intention Type Activation (Univariate Contrast: Free - Cued) 
  

 
inferior parietal cortex R 185 39 -58 40 

 
posterior MFG R 168 45 32 31 

 
dorso-medial PFC / preSMA B 146 0 26 43 

 
anterior MFG L 74 -39 53 13 

 
inferior parietal cortex L 49 -42 -55 55 

 
posterior MFG L 44 -42 29 34 

 
orbital MFG R 25 39 50 -8 

  anterior MFG R 24 36 50 10 
Task decoding results are shown for a statistical threshold of p < 0.05 (FWE corrected at the cluster level, initial 
threshold p < 0.005). Intention type results are shown for a statistical threshold of p < 0.05 (FWE corrected at 
the voxel level, minimal cluster size 20 voxels). Abbreviations: L left, R right, B bilateral, MFG middle frontal 
gyrus, PFC prefrontal cortex, SMA supplementary motor area 

 


